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CHAPTER 1

\\ INTRODUCTION

The ultimate objective of this work is to establish reliable finite element
procedures for predicting the effect of structural damage, for example due to a
shock wave, on the collapse strength of submarine hulls. However, it is first
necessary to demonstrate the validity of finite element calculations for
undamaged structures. Unfortunately, the open literature provides little infor-
mation on finite element code validation for buckling of stiffened structures.

In twg previous studies by the current author, 12 predictions using the F\R\
code STAGS” were compared to those from other methods in the open literature.
The present report compares STAGS predictions to published experimental results
from seven different tests. The agreement is reasonable, particularly in view
of the difficulties of this type of analysis.

lMoussouros, M., Comparisons of Static Collapse Pressure Predictions of a
Ring-Stiffened Cylindrical Shell Subject to Hydrostatic Pressure, NSWC TR
81-325, 3 Mar 1982.

2Moussouros, M., Further Results on the Predictions of Collapse Pressure of
a Ring-Stiffened Cylindrical Shell Subject to Hydrostatic Pressure, NSWC TR

82-172, Sep 1982.

3Almroth, B. 0., Brogan, F. A., and Stanley, G. M., Structural Analysis of
General Shells, Vol. II, User Instruction for STAGSC, LMSC-D633873, Apr 1979.

\

\
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CHAPTER 2

ANALYSIS

A number of papers in the open literature contain exgerimental collapse
pressure values for ring-stiffened cylindrical shells.*"1

4Slankard, R. C., and Nash, W. A., Tests of the Elastic Stability of a Ring-
Stiffened Cylindrical Shell, Model BR-5 (A=1.705, Subjected to Hydrostatic
Pressure, DTMB Report 822, May 1953.

5Slankard, R. C., Tests of Elastic Stability of a Ring-Stiffened Cylindrical
Shell, Model BR~4 (A=1,103) Subjected to Hydrostatic Pressure, DTMB Report
876, Feb 1955.

6Kirstein, A. F., and Slankard, R. C., An Experimental Investigation of the
Shell-Instability Strength of a Machined, Ring-Stiffened Cylindrical Shell
Under Hydrostatic Pressure (Model BR-4A), DTMB Report 997, Apr 1956.

7Lunchick, M., and Overby, J. A., An Experimental Investigation of the Yield
Strength of a Machined Ring-Stiffened Cylindrical Shell (Model BR-7M) Under
Hydrostatic Pressure, DIMB Report 1255, Nov 1958.

8DeHart, R., and Basdekas, N. L., "Investigation of Yield Collapse of
Stiffened Circular Cylindrical Shells with a Given Out-of-Roundness,'" in
Collected Papers on Instability of Shell Structures-1962, NASA TN D-1510,
1962, pp. 245-253.

9Midgley, W. R., and Johnson, A. E., Jr., "Experimental Buckling of Internal
Integral Ring-Stiffened Cylinders,' Experimental Mechanics, Jul 1973, pp.
145-153.

10Rinra, R. K., "Hydrostatic and Axial Collapse Tests of Stiffened Cylinaers,"
Paper 2685 in Offshore Technology Conference, 1976, pp. 765-788.

llgalletly, G. D., Slankard, R. C., and Wenk, E., Jr., "General Instability
of Ring-Stiffened Cylindrical Shells Subject to External Hydrcstatic
Pressure--A Comparison of Theory,' Journal of Applied Mechamics, Vol. 25,
No. 2, Jun 1958, pp. 259-266.

. 12Reynolds. T. E., and Blumenberg, W. F., General Instability of Ring-Stiffenea
y Shell: Subject to External Hvdrostatic Pressure, DTMB Report 1324, Jun 1939,
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Several of these studies!’ ~23 provige e¢nough data to permit mogeling
(e.g., m°@%£ 3es1gn, material properties). Unfortunately, in our juagment, the
remainder* do not give sutficient information, but they are listed nere

for completeness.

Table 1 gives the structural details of the models to be examined, waile
Table 2 gives material properties.

The various models have been analyzea using the general purpose finice

element code STAGS. Tables 3 and 4 show details of the finite element analysis,
including the dimensions actually used in the computations, the number of

13Krenzke, M. A., Effect of Initial Deflections ana Residual Welding Stresses

of Elastic Behavior and Collapse Pressure of Stiffened Cylinders Subjected to
External Hydrostatic Pressure, DTMB Report 1327, Apr 1960.

1“Blumenberg, W. F., and Reynolds, T. E., Elastic Instability of Ring-
Stiffened Cylinders with Intermediate Heavy Frames Under External Hydrostatic
Pressure, DTMB Report 1588, Dec 1961.

15Blumenberg, W. F., Hydrostatic Pressure Tests to Determine the Effect of
Varying Degrees of End Fixity on the Elastic General Instability Strength of
Ring-Stiffened Cylindrical Shells, DTMB Report 2361, May 1967.

16Batista, R. C., and Croll, J. G. A., "Simple Buckling for Pressurized
Cylinders," Journal of Engineering Mechanics EM5, ASCE, Oct 1982, pp.927-944.

1751ankard, DTMB Report 822.
18Slankard, DTMB Report 876.
19girstein, DTMB Report 997.
20Lunchick, DTMB Report 1255.
2lpeHart, NASA TN D-1510.
22Midgley, pp. 145-153.
23Kinra, pp. 765-788.
24Galletly, pp. 259-266.
25Reynolds, DTMB Report 1324.
26Krenzke, DTMB Report 1327.
27Blumenberg, DTMB Report 1588.

28Blumenbetg, DTMB Report 2361.

29Bastista, pp. 927-944.
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degrees of freedom (D.O0.F.), the distribution of noaes, and the boundary
conditions. The models are assumed to be perfectly circular. They are
discretized using flat plate quadrilateral elements, specifically the STAGS iU
element. Rigid body modes are removed with appropriate constraints. Axial
loads are imposed as equivalent line loads along the end plate perimeters. This
methoa neglects local bending at end plate intersections. Finally the 'aead
pressure' 1s used. The base load pressure used in 1 lb/in? ana the linear
option (linear stress state) of STAGS is exercised, unless otherwise. mentioned.
Figure 1 illustrates the coordinate system and the notation to be used to aenote
the displacements.




CHAPTER 2

DISCUSSION OF RESULTS

Table 5 displays the numerical results obtained using STAGS, i.e., critical
pressures for static collapse, buckling mode, type of boundary conditions usea
in the analysis, and type of stiffening. Also shown are experimental collapse
values and collapse modes where available.

Note that Models 1 _and 2 give a buckling pressure of 106.3 1b/in? for
Model 1 and 102.6 lb/in2 for Model 2 with correspnding oval modes (Figures 2
and 3), indicating stiffener collapse.* Also note that the half and full models
circumferentially do not give identical critical pressures, although both compu-
tations are carried out using the same base load. Model lA, which incorporates
an additional shorter frame spacin§ with a rigid bulkhead, results in a higher
critical pressure of 155.596 1lb/in“ and a lobar mode of collapse (Figure 4).
For Model 1A, the maximum axial and hoop stresses are -28.785 ksi and -35.631
ksi, respectively. The lower experimental pressure (80 1b/in2) is attributea
to residual strains (model was not stress relieved) rather than to imperfections,
considering that in the case of ring-stiffened cylinders, the rings in a sense
constitute imperfections far larger in magnitude than the ones due to fabri-
cation. There is an undeniable influence due to imperfections, however, wh.'ch
according to Coppa is smoothed out with increasing pressure, except for these
imperfections due to the rings themselves. The case of axial compression only
is excluded in this discussion.

A nonlinear incremental analysis was performed for Model 3 (Figure 5). It
was discontinued at a pressure 9500 1b/in? due to a large step size increment.
This 1s comparable to the experimental collapse pressure of 9750 lbs/in“. Note
that the slope of the pressure-cisplacement curve on Figure 5 is decreasing
rapidly in this vicinity.

Model 4 (simply supported at enma 1) buckled in a loiar pattern (Figure »5)
at 23.704 1b/in“, while Model 5 (Figure 7) with continuity conditions at end 1
ovalized at 21.262 1b/in®. Model 6 with W = O at end 1 (effect of bulkhead)
buckled at 23.669 lb/in? in a diamond shape mode between rings (Figure 8,.

*In Figure 2, the stiffener at midlength is shown displaced radially inwards.

30Coppa, A. P., '"Measurement of Initial Geometrical Imperfections of
Cylindrical Shells,' AIAA Journal, Vol. 4, No. 1, Jan 1966, pp. 172-175.
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According to Midgley and Johnson,31 the stiffeners were overdesigned tu ivcalize
' the instability between successive rings. Model 7 was treated using an incre-
;j mental nonlinear analysis. When discontinued at 31 lb/inz, the moagel had not
' attained the collapse pressure. The experimental collapse pattern given is that
{ of Midgleg and Johnson.32 Overall, if we are to take the first value given

(25 1b/in“), the finite element program STAGS gives a fairly good estimate for
this model. The experimental model represented by Models 4 through 7 was a
machined structure.

—l' Al‘,,t.g- ,p'-‘-'_
87 80 4 8 & a 2

Models 9 and 10 (Figures 10 and 11) yield collapse pressures well below the
lowest experimental value (65 in/in?) reported. Models 8 and 11 (Figures Y
and 12) failed by overall instability at 62.651 1b/5n and 62.371 1b/in?,
respectively. These models were based on Model F. The ring stiffeners were
underdesigned, unable to prevent overall collapse or restrict buckling between
them. F1gurez 9 through 12 exhibited overall instability, confirmea by Midgley
and Johnson.3* An oval critical mode was obtained when continuity conditions
at end 1, without an end ring (Model 9 of Figure 10), were used and also when an
end ring was employed (Model 10 of Figure 11). Since the stiffeners were not
strong enough, they collapsed according to the ring formula,3 which in this
case gives 5.266 1b/1n (Table 5). The experimental model represented by
Models 8 through 11 was a machined structure.

)

rg
a4

‘{l.- { "{ .'

Ot i) A
AR f

.
&
obe fnN

- On the other hand, Southwell's formula, 36 treating the shell as fully
< unstiffened, yields about 6.60 in/in2 (this is not included in Table 5) as the
jb collapse pressure. U31ng Brush and Almroth's Figure 5.17 or 5. 1137 with L =
o 18.85 in., a = 7.955 in., h = 0.040 in., E = 10.10 x 10® 1b/in2, v = 0.300,
e = 59,194 1lb-in., 2 = 1065 8, we obtain p~36 and, therefore, the critical
collapse pressure is 7.43 lb/lnz. It is evident from this analysis that only
a very long cylinder with weak stiffeners should buckle as displayed on Figures
- 10 and 11. On the other hand, when the stiffeners are strong (Figure 7 of Model
g 5), we may still obtain a relatively accurate estimate of the critical pressure.
. It is, however, associated with the wrong mode. At first sight, it appears that
G the computed collapse pressures for Mcdels 2 and 4 are reasonably good, although
) the predicted collapse modes are not. It is considered that their apparent good
agreement should not be trusted too much. As discussed in the next paragraph,
Cn the lower experimental pressure is probably due to residual strains and initial
3 imperfections in this welded cylindrical model.

3lMidgley, pp. 145-153.

32Midgley, pp. 145-153.

AR

I3Midgley, pp. 145-153.

¢ a1

3“Midgley, pp. l45-153.

4¢¢.r1

35Moussouros, NSWC TR 82-172. v

A

)

36Moussouros, NSWC TR 81-325.

37Brush, D. 0., and Almroth, B. O., Buckling of Bars, Plates, and Shells,

McGraw Hill, Inc., 1975, pp. 161-167.
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Model 12 (Figure ;3) clearly shows lobar buckling between rings at a nigher
pressure (161.19 1lb/in*) reported on Table 5 (110-1l5 lb,;1n~). Another unre-
ported model, with frame spacing twice that of Model 12, collapsed at 78.063

1b/in? in the lobar mode. The experimental moael represented >y Model i. was
a welded structure.

Model 13 (Figure 14) collapsed at 536.058 1b/in> in a lobar moae. At

. this pressure, a hoop stress of =-58.96 ksi (higher than yield) developea ana the
linear.stress state must be abandoned. Model 14 (Figure 15), which exhibited
plastic deformation, haa not failed up to a pressure of 512.5 lb/in%. at this
point, it appears that residual stresses were the cause of this large discrepancy
(390 ln/Ln ). A model identical to BR-4, but stress relieved, failea at 550
1b/in2 (compared to 390 in/inz, which includes residual stresses).38 This 1is
close to the reported collapse pressure by Bushnell>? and the BASOR program
(460 1b/in?).

In Model 15, collapse pressure predictions ignoring plasticity are much
higher than the experimental values used and should be disregarded._Model 16 is
treated by nonlinear analysis; it did not collapse up to 1500 lb/inz. It must
be stressed at this point that except for Model 3, for which the stress strain
curve was given, the stress strain curve had to be approximated and adjusted,
causing another source of differences.

Models 17, 18, 19, and 20 (Figures 16, 17, 18 and 19) collapsea in a
fashion similar to Models 8, 9, 10, and 1l respectively, but at lower critical
pressures, since their length was larger. Observe that the crltxcal collapse
pressures for Moaels 18 and 19 (4.13 1b/in2 and 4.268 1b/1n ) using continuity
conditions at end 1 were only about SOA of the critical pressure for Models 9
and 10 (7.257 1b/in? and 7.524 1b/in?). This ratio (0.569 to 0.567) in critical
press%re was not the same for Models 17 an< 20 (19.893 1b/in? and 20. 277
lb/in“) as compared to Models 8 and 11 (62.651 lb/xn2 ana 62.371 1b/in?). This
last range of ratios in critical pressure, as £ is reduced to 0.5089%, becomes
0.317 to 0.325, suggesting a trend similar to a strut. These comments follow,
since the mode here is that of general instability in the elastic range. It 1s

» known that, when the length of a strut is increased from £} to 122 the critical
;i pressure within the elastic range is reduced to the ratio (2)/%3)¢. In this

¥ case, the new critical pressures for Models 17 and 20 should have been 0.%589 ot
E: the critical pressures of Models 8 and 51 respectively, i,e., 16.22 1lb/in“ and
ii 16.15 1b/in? (compare with 19.893 1b/in® and 20.277 1b/in? of Table 5).

A portion of Table 5 was compiled using various formulae in tne open
literature to give an estimate of the critical pressure at which buckling is to

Q occur, in theory, at least in the elastic range. Furthermore, it provides
» estimates to the collapse of ring stizfeners subject to live pressure. Note
ﬁi that for Models 4 through 7 (Model G) 0, for which the stiffeners were not
. 38 irstein, DIMB Report 997.

-

.'Y

b 39Bushnell, D., "Effect of Cold Bending and Welding on Buckling of Ring-
E? R Stiffened Cylinders,'" Journal of Computers and Structures, Vel. 12, 1980,

pp. 291-307.

- 40Midgley, pp. 145-153.
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unagerdesigned, the critical pressure for ring buckling by Table 5> is 16.410
3 lb/inzb while the experimenta£ collapse of the shell 25 lb/in*._ The Southwell
method™" yielded 19.585 lb/in“ and the Von Mises™“ 23.091 1lb/in“, respectively,
for Models 4 through 7. The point to be conveyved 1s that when the approximate
theoretical formulae define critical collapse pressures of the same relative
- magnitude as STAGS, with stresses below the yield point, buckling probably
occurs between the stiffeners in a diamond-shape fashion. On the other hana,
when approximate formulae suggest critical buckling pressures for a ring
- stiffener well below the finite element predicted value with stresses below
. yield, the probable mode of collapse would be overall instability, such as in
Models 8 through 11 and 7 through 20 (Table 5).

41Moussouros, NSWC TR 81-325.

42Moussouros, NSWC TR 81-325.
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CHAPTER 5

SUMMARY

This report compares finite element static pressure predictions to
experimental values reported in the open literature. As expected, there are
discrepancies between these values. The most obvious one appears to be residual
stresses or strains.

Simply supported or clamped (as defined here) end conditions lead to
similar predictious for the buckling pressures. Continuity conditions, in
general, may give the buckling pressure for a ring (oval mode), but it may be
preferable not to use them except when the stiffeners are especially heavy.

Considering the overall performance of STAGS, it is safe to say that, with
some exceptions, it has had some success in predicting critical pressures,
especially in the elastic range. However, as the thickness of pressure hulls
increases and R/h decreases, failure may occur by plastic yielding and
axisymmetric collapse at a limit point. For these cases, predictions using
STAGS are substantially less successful. It must be further stressed, however,
that in all likelihoqd, even in the plastic range, the presence of the rings,
viewed as an imperfection, will dominate buckling.

In closing it must be mentioned that it is hoped to overcome some of the
limitations of the current analysis in the future by exploiting

(1) a different analysis option of STAGS
(i1) Dbetter experimental data

(i11) other computer codes such as BOSOR, ABAQUS or any other technique
that may become available in the meantime.

43Moussouros, NSWC TR 81-325.
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END 1

u = Axial displacement (along global longitudinal axis)
v = Tangential displacement (along local axis)

w = Radisl displacement (along local radial axis)

Ru = Rotation about longitudinal axis x

Rv = Rotation about local tangential axis v

Rw = Rotation about local radial axis w

X 1%
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FIGURE 1. FULL CYLINDER CIRCUMFERENTIALLY AND HALF AXIALLY DISPLAYING CIRCULAR
ENDS 4 AND 3 AND ASSUMED LONGITUDINAL ENDS 2 AND 4 AT §=0AND O=7
RESPECTIVELY
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FIGURE 22 MODE 1 FOR VIODEL 1, HALF MODEL OF BR.5
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FIGURE 3. MODE 1 FoR MODEL 2, Fyr L MODEL OF BR.5
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FIGURE 4. MODE 1 FOR MODEL 1A (BR-5 INCLUDING 1 BAY WITH BULKHEAD) SUBJECT
TO CONTINUITY CONDITIONS AND W=0 AT BULKHEAD END

13

.............




V]

Al

NSWC TR 83-20

|9
(O]

in
)
b
Lv]
i
]
A)

10000

-

8750.00

7500.00

6250.00

{ LB/S@.IN,)

PRESSURE
3750.00  5000.00

2500.00

1250.00

1

) LN
.00000 01667 .03333

.05000

i
.06667

J
.08333

. DEFLECTION/THICKNESS RATIO

L
0.100G¢

FIGURE S. EXTERNAL PRESSURE DEFLECTION/THICKNESS CURVE OF MODEL 3
UP TO APPROXIMATE STATIC COLLAPSE

14




N NSWC TR 33-20

=

By Ty ey

- Ty

PP &

a2 la" e

1

FIGURE 6. MODE 1 FOR MODEL 4 (ALUMINUM MODEL G OF MIDGLEY AND JOMNSON)
SUBJECT TO SIMPLY SUPPORTED CONDITIONS AT END 1
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FIGURE 7. MODE 1 FOR MODEL 5 (ALUMINUM MODEL G OF MIDGLEY AND JOHNSON)
SUBJECT TO CONTINUITY END CONDITIONS AND W0 AT END 1

1@

O N .'*I
A A PN
PR PR UL DY




NSWC TR 33-20

FIGURE 8. MODE 1 FOR MODEL 6 (ALUMINUM MODEL G OF MIDGLEY AND JOHNSON)
SUBJECT TO CONTINUITY CONDITIONS ANDW =0 AT END 1
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FIGURE 9. MODE 1 FOR MODEL 8 (ALUMINUM MODEL F OF MIDGLEY AND JOHNSON)
SUBJECT TO SIMPLY SUPPORTED CONDITIONS AT END 1
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MODE 1 FOR MODEL 9 (ALUMINUM MODEL F OF MIDGLEY AND JOHNSON)
SUBJECT TO CONTINUITY CONDITIONS AND W0 WITHOUT END RING AT END 1
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3 FIGURE 11. MODE 1 FOR MODEL 10 (ALUMINUM MODEL F OF MIDGLEY AND JOHNSON)
SUBJECT TO CONTINUITY CONDITIONS AND W =0 WITH END RING AT END 1
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FIGURE 12. MODE 1 FOR MODEL 11 (ALUMINUM MODEL F OF MIDGLEY AND JOHNSON)
SUBJECT TO CONTINUITY CONDITIONS AND W = 0 AT END 1

iy
¢ 21

dadtn o dn ' o B8 a e o pa el




—
:
‘..A
“'. . . » S - ‘l‘.‘
_ :
| o
Y, :
: -4
F, :
: b
L .
b Y
b :
L U .
, : |
ﬁ-.- = ....
L nNu ..
.r_ c
:" : . .
¥ T ;
3 : :
e : , .,.L
‘. E | k_
: m ;
| 2 ]
ﬁ... : :
b R ..A
: 8 : ;
S :
x »
¥ o o |
L - :
. Q N o ..
g = A : |
. 3 //.7/; .m/_f i) M
. W % a | g
. : :
P H : :
; : = .“
b : |
,. aq 1
| 2< .
. we K
| o2 9
. oo &
. oz .
(. sSd
X 3 :
., m m |
-. : —“ .. 4
t E D |
IA m m A
”_ | S0
. a1o :
V. w
‘ S
.. o
. w
wn
'.
(] .. o.
- .(.A
. -.l




——— -‘vv Pl I CHM AT S B A S A i iR e T S AR N i it e A T S T T i A e A S S P v r1

NSWC TR 83-20

FIGURE 14. MODE 1 FOR MODEL 13 (BR-4, EXTERNALLY STIFFENED STEEL MODEL)
SUBJECT TO CONTINUITY CONDITIONS ANDW =0 AT END 1
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FIGURE 15. DEFORMED SHAPE OF MODEL 14 (STEEL MODEL BR-4) AT 500 Lb/in?
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A FIGURE 16. MODE 1 FOR MODEL 17 (1.966 LONGER THAN MODEL 8) SUBJECT TO
- SIMPLY SUPPORTED CONDITIONS AT END 1
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FIGURE 17. MODE 1 FOR MODEL 18 (1.965 LONGER THAN MODEL 9) SUBJECT TO
CONTINUITY CONDITIONS AND W #0, WITHOUT END RING AT END 1
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FIGURE 18, MOOE 1 FOR MODEL 19 (1.9656 LONGER THAN MODEL 10) SUBJECT TO
CONTINUITY CONDITIONS AND W0, WITH END RING AT END 1
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NSWC TR 52-19
TABLE 4. MODELING DETAILS
TOTAL NO. OF
DEGREES NODE RINGS BOUNDARY 30UNDARY
FEATURE / OF BETWEEN DEGREE OF CONDITION CONDITION
MODEL NO. FREEDOM FRAMES SYMMETRY AT END 1% AT END 2%
1 1350 3 Half Axially RV=RW=0 RV=RW=0
Half Circum- W#0 U=0
ferentially U#0
1A - 1950 3 Half Axially RV=RW=0 RV=RW=0
Half Circum- W=0 U=0
ferentially U#0
2 2646 3 Half Axially RV=RW=0 RV=RW=0
Full Circum- W#0 U=0
ferentially U#0
3 1014 7&3 Half Axially RV=RW=0 RV=RwW=0
Half Circum- W#0 U=0
ferentially U#0
4 702 1 Half Axially RV=RW=0 RV=RW=0
Half Circum- Ww=0 U=0
ferentially U#0
5 702 1 Half Axially RV=RW=0 RV=RW=0
Haltf Circum- W=0 U=0
ferentially U#0
6 702 1 Half Axially RV=RW=0 RV=RW=0Q
Half Circum- W=0 U=0
ferentially U#0
7 702 1 Half Axially RV=RW=0 RV=RW=0
A S Half Circum- W#0 U=0
W ferentially U#0
*a ) *At both ends tangential displacement V=0 at 90° (ana 170° for full mocel). For
X tull Model No. 2 at 8=0 and 8=180° W=0. (In general W is free, if W#0 is

stated in boundary conditions).
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TABLE 4. (Cont.)
TOTAL NO. OF
DEGREES NODE RINGS BOUNDARY BOUNDARY
FEATURE/ OF BETWEEN DEGREE OF CONDITION CONDLITION
MODEL NO. FREEDOM FRAMES SYMMETRY AT END 1~ AT END 2%
8 1326 1 Hali Axially V=W=RV=0 RV=RW=0
Half Circum- U#£0 U=0
ferentially
9 1326 1 Half Axially RV=RW=0 RV=RW=0
Half Circum- W#0 U=0
ferentially U#0
10 1326 1 Half Axially RV=RW=0 RV=RW=0
Half Circum- W#0 U=0
ferentially U#0
11 1326 1 Half Axially RV=RW=0 RV=RW=0
Half Circum- w=0 U=0
ferentially U#0
12 7650 3 Half Axially RV=RW=0 RV=RW=0
Half Circum- w=0 U=0
ferentially U#0
13 546 1 Half Axially RV=RW=0 RV=RW=0
Half Circum- W= U=0
ferentially U0
14 546 1 Half Axially RV=RW=0 RV=RW=0
Half Circum- W=0 U=0
ferentially U#£0
15 858 1 Half Axially RV=RW=0 RV=RW=0
Half Circum- W=0 U=0
ferentially U#£0
34
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TABLE 4. tCont.
AT TOTAL NO. OF !
DEGREES NODE RINGS ! BOUNDARY BOUNDARY
FEATURE/ OF BETWEEN E DEGREE OF CONDITION CONLL{TIION
MODEL NO. FREEDOM FRAMES SYMMETRY AT END 1~ AT END 2%
16 858 1 Halr Axially RV=RW=0 RV=RW=0
Half Circum- w=0 U=0
ferentially U#0
17 1326 1 Half Axially V=W=RU=0 RV=RW=0
Half Circum- U#£0 U=0
ferentially
18 1326 1 Half Axially RV=RW=0 RV=RW=0
Half Circum- W#0 U=0
ferentially U#0
19 1326 1 Half Axially RV=RW=0 RV=RW=0
Half Circum- W#0 U=0
ferentially U#0
20 1326 1 Half Axially RV=RW=0 RV=RW=0
Half Circum- w=0 U=0
ferentially U#0
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